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Abstract— In this paper, we study the tracking control problem
for a nonlinear system in which the zero dynamics may be
unstable. The objective here is to approximate the nonlinear
system by another singularly perturbed system by using a small
singular perturbation parameter  . The proposed approach is

based on the methodology of exact input output linearization
control, the integrator backstepping approach and the theory of
singularly perturbed systems. The performance of the suggested
approach is evaluated in an illustrative inverted cart-pendulum
example.

Keywords—Non minimum phase system, integrator

backstepping approach, input output linearization, singular
perturbed system, tracking control.

I. INTRODUCTION

In the tracking control theory, the input output linearization
is one of the most available methods [1]. If t0000he nonlinear
system has a stable zero dynamics, the input output
linearization technique linearizes the nonlinear system by
using a state feedback and a coordinate transformation [1],
[2]-[3]. Thus, the linear system theory can be employed to
design a controller achieving the desired control performance
for the linearized closed loop transfer behavior. On the other
hand, if the zero dynamics is unstable, the nonlinear system is
called a non minimum phase. Thus, the standard input output
linearization leads to an unstable closed loop system.

Consequently, the input output linearization of a non
minimum phase system has attracted a lot of attention to
enlarge the class of nonlinear systems where an input output
linearization can be used [4]-[5]. In this contribution, Kravaris
and Soroush have developed several results on the
approximate linearization of non minimum phase systems [6],
[7], [8]-[9]. For instance, in [8]-[9], the system output is
differentiated as many times as the order of the system where
the input derivatives that appear in the control law are set to
zero when computing the state feedback input. In [10], the
system input output feedback is first linearized. Then, the zero
dynamics is factorized into stable and unstable parts. The
unstable part is approximately linear and independent of the
coordinates of the stable part. Moreover, an original technique
of control based on an approximation of the method of exact
input-output linearization was proposed in the works of
Hauser and al [11]. In [12]-[13], the approximation presented
in [11] is used to improve the desired control performance.

In this paper, we address the problem of tracking control of
a single input single output of non minimum phase nonlinear
systems. The idea here is to transform the given system into
Brynes-Isidori normal form, then to use the singular perturbed
theory in which a time-scale separation is artificially
introduced through the use of a state feedback with a high-
gain for the linearized part. The integrator backstepping
approach is introduced to generate a reference trajectory for
stabilizing the internal dynamics. The stability analysis for the
proposed approach is based on the results of the singular-
perturbation theory [14].

The present paper is organized as follows: in Section II
some mathematical preliminaries are presented. The control
law design and stability analysis are given in section III.
Section IV gives the inverted cart-pendulum to illustrate the
effectiveness of the proposed approach. Finally, some
concluding remarks are provided in Section V.

II. SCOPE AND MATHEMATICAL PRELIMINARIES

In this paper, we consider a single input single output
nonlinear system (SISO) of the form:

   

 

x f x g x u

y h x

  





 (1)

where nx   is the n-dimensional state variables, u   is
a scalar manipulate input and y   is a scalar output.

   . , .f g and  .h are smooth functions describing the

system dynamics. 

A. Input output linearization

The input output linearization is based on two concepts:
the concept of relative degree and the concept of state
transformation.

The relative degree r of the system (1) is defined as the
number of derivation of the output y needed to appear in the

input u , such as nx  :
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If r n , then system (1) can be a feedback linearized into
Byrnes-Isidori normal form [15] using the following steps:

 Step1: We applied the following control law
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This control law compensates the nonlinearities in the input-
output behavior.

 Step 2: we use the state transformation

   x x   , given by:

       1
T

r
f f n r n rx h x L h x L h x  

 
     (4)

The system (1) can be written as:
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where  is the state vector of the internal dynamics.

B. Integrator backstepping approach

In this section, we consider the nonlinear system (1) which
is written in the strict-feedback form given by [16], [17]-[18]:
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6)

where    ,ix t u t and  y t are the thi state variables, the

system input and output are all assumed to be available for

measurement;  .if and  . , 0, ,ig i n  , are smooth

nonlinear functions and 0ig  .

The aim of the control is the trajectory tracking of the output

y of the system (6), an error base  , 1, ,ie i n   is created

as the difference between all the system states and their

reference states i refx .

 1, 2, ,e x x i ni i i ref      (7)

The most popular method for nonlinear systems in the strict
feedback form of (6) is the integrator backstepping approach
developed in [16]-[19]. This is a Lyapunov-based approach in
which the global convergence of the output tracking error is
guaranteed in the absence of the model error. If this approach
were applied to (6), then it would be possible to create a
generator of trajectory for the state vector x in the form:
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 (8)

and the control law is as follow:

    1
1 1u f x g e en n re f n nn ng n

      (9)

where  y tref is a reference trajectory at least nC ,


, h is a

bijective function and 1h is nC .

Using (8) and (9), then the error dynamics equations are as
follows:
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 (10)

It is easy to determine that the equilibrium point 0e  is
the unique solution of (10).

In order to illustrate the stability of the origin 0e  of
system (10), the following exponential stability theorem is
introduced.
Theorem 1 [14]: Given system (1), if there exists a Lyapunov

function  V x and positive constants
1 2,  and

3 such that

 
2 2

1 2x V x x   and  
2

3V x x  , then the origin

is exponentially stable.
Consider the following Lyapunov function

2
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1
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i

V e


  (11)

Therefore, the Lyapunov derivative V is

2

1

n

i i

i

V e


  with  0, 1, 2, ,i ni     (12)

So, the origin 0e  of system (10) is globally exponential
stable

C. Singular perturbed system

A singularly perturbed system is one that exhibits a two-
timescale behavior, i.e. it has a slow and fast dynamics and is
modeled as follows [20]-[21]:

   1 0, , , 0F u       (13a)

   2 0, , , , 0F u       (13b)

 y h x (13c)

where m  and P  are respectively the slow and fast

variables and 0  is a small positive parameter. The

functions 1F and 2F are assumed to be continuously

differentiable. 0 and 0 are respectively the initial conditions

of the vectors  and  . If 0  , the dynamics of  acts

quickly and leads to a time-scale separation. Such a separation
can either represent the physics of the system or can be
artificially created by the use of high-gain controllers.

As 0  ,  can be approximated by its quasi-steady state

 ,u   obtained by solving    1 1, , 0 , ,0 0f g u     .

So, the reduced (slow) system is given by:

     
 

2 2

2

, , , 0 , , , 0

,

f u g u u

F u

      



 




(14)

Note that the reduced system (14) is not necessarily affine in
input.
In the next theorem we establish the exponential stability of
the singular perturbed system (13).
Theorem 2 [14]: Assume that the following conditions are
satisfied:

 The origin is an equilibrium point for (13),
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  ,u  has a unique solution,

 The functions 1 2 1 2, , , ,f f g g  and their partial

derivatives up to order 2 are bounded for  in the

neighborhood of  ,

 The origin of the boundary-layer system (13) is
exponentially stable for all  ,

 The origin of the reduced system (14) is
exponentially stable.

Then, there exists 0   such that, for all    , the origin
of (13) is exponentially stable.

III. CONTROL LAW DESIGN

In this section, an approach to the tracking control problem
of the nonlinear non minimum phase system is proposed
based on a singular perturbed theory and a combination of
backstepping and input output linearization. In particular, it is
shown that the closed-loop system can be described as an
interconnection of two subsystems: the reduced subsystem
and the boundary-layer subsystem. The stability analysis of
the proposed approach is provided using the results of the
singular perturbation theory [19].

A. Boundary Layer subsystem

Consider the nonlinear system described by (1), then we
apply the control law (3) which is given by:
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k
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     (15)

where  y tref is the reference trajectory for the output,

0  a small positive parameter, and

 0, 1,2, , 1k i ni     are the coefficients of a Hurwitz

polynomial [14].
and the internal dynamics are given by:

  1
, , , ,

r
Q y y y 


   (16)

Under the assumption that the gains ik are chosen large,

such as for any choice of 0  , the closed loop is stable and
 can be used as a single tuning parameter, the system (15)-
(16) can be written in the form of a singular perturbed system
(13) . So the fast state can be defined by:

 11 , 1, ,
ii

i y i r 
   (17)

If we replace (17) by (16), we obtain

    0, , , 0Q       (18)

and also by (15), such that

 
  

1

1 11
0

r
rr

r i iref i ref
i

y k   


 


   (19)

with  12
T

rr
ref ref ref ref refy y y y   

 
  

  

thus, (16) can be written as follows:
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(20)

B. Reduced subsystem

As the tuning parameter  is small, so the quasi-steady-
state assumption can be introduced. Thus, the reduced
subsystem (QSS subsystem) when setting to zero in (18).
Letting 0  in (17)

1

2 0r

y

 




    (21)

we use this result and let 0  in the last equation of (20),
we obtain
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(22)

Therefore, when 0  :

0 0
T

refy       (23)

The vector is the quasi-steady-state value of .

The internal dynamics depends on the output y , its derivatives

 1
, ,

r
y y

  and the small parameter  , such as:
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, ,

, , , , , 0
r

Q

Q y y

   

   




 



 
(24)

Under the quasi-steady-state QSS assumption, the output y

tends to refy and the derivatives  1
, ,

r
y y

  tend to their

references  1
, ,

r
ref refy y

  . Then, the internal dynamics is

written by
    1

0, , , , , 0
r

ref refQ y y    


    (25)

Thus, the reference trajectory   1
, , ,

r
ref ref refy y y

  will be used

for the stabilization of the internal dynamics.
In general, the input output linearization techniques

decouple between the input output behavior y and the

internal dynamics . On the other hand, the quasi-steady-state

(QSS) assumption decouples between the internal dynamics

and the input output behavior y . Thus, y does not have any

effect on . Therefore, the reference trajectory refy is used for

the control of the internal dynamics. Thus, the Boundary
Layer subsystem (20) and the reduced subsystem (QSS
subsystem) (25) can be manipulated separately.
Firstly, we define a novel state vector

 1
1

T
r

n r ref refy y  



 
  

  such as the reduced

subsystem (QSS subsystem) (25) can be written by
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 , QSSQ u  with  r
Q SS refu y (26)

Note that it is important to include additional states
 1

, , ,
r

ref ref refy y y
  since they are considered as independent

variables, and the last derivative  r
Q SS refu y is considered as

the control law for (26).

To determine QSSu , we need the assumption that the internal

dynamics (26) is written in the following strict feedback form:
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(27)

Then, we use the integrator backstepping approach to

determine the reference trajectory refy and the control law

QSSu . So, we define  1QSSy   as a virtual output for the

subsystem (26) and QSS refy are the reference trajectory for

the output QSSy . By referring to the equations (8) and (9), we

obtain the following trajectory generator:
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(28)

where ref   

and the control law is given by

 1 1 1

1
QSS n n ref n n n n

n

u      


         (29)

C. Stability analysis

In this section, we use the theorem 2 of exponential
stability of singular perturbed system to analyze the stability
of the closed loop system. If both the reduced and the
boundary layer subsystems are exponentially stable, then the
combination is also exponentially stable. The following steps
will be used to prove the stability of the proposed approach:

1) Exponential stability of the Boundary Layer subsystem

Let us consider the error vector given by

ref    (30)

Then, the boundary layer subsystem (20) becomes:

1

1 2 1 1

0

ref

T
r

i i
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k
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t
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with A is defined by

1 2 3

0 1 0 0
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Using the theorem1, the origin 0  is exponentially stable,

and the Lyapunov function is

1

1

2
TV     (33)

where TA A Q     and Q is a matrix defined positive

2) Exponential stability of the reduced subsystem

The stability of the reduced subsystem is provided by
using the integrator backstepping approach. So the Lyapunov
function is given by:

1
2

1

1

2

n

i

i

V 




   (34)

3) Global exponential stability

Using the theorem 2, we can conclude that the origin of
(1) is exponentially stable. Although all the conditions of the
theorem 1 are satisfied such that

 The origin  0, 0 and y 0ref    is an

equilibrium point for the subsystems (20) and (26)

  , QSSQ u has a unique solution

0 0 0 0refy     

Furthermore, as a result of the integrator

backstepping approach, refy is a function of 

 Q and its partial derivatives up to order 2 are
bounded for  in the neighborhood of 

 The origin of the boundary layer system (20) is
exponentially stable 

 The origin of the reduced system (26) is
exponentially stable

IV. ILLUSTRATIVE EXAMPLE

Consider the cart-inverted pendulum illustrated in fig. 1.

The cart must be moved using the force  u t so that the

pendulum remains in the upright position as the cart tracks
varying positions at the desired time. The differential
equations describing the motion are [22]:

  2cos sin

cos sin 0

p

p

M m y ml ml u

l y g ml

   

  

    


  

 

 
(35)
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where  is the angle of the pendulum, py is the displacement

of the cart, and u is the control force, parallel to the rail,
applied to the cart.
The numerical parameters of the inverted pendulum system

are 0.455 , 0.21 , 0.355M kg m kg l   and 2g=9.81m/s

py

Fig. 1. inverted pendulum system

The system can be put into the state space form as:

 

 
 

1 2

2 1 4 1

3 4

2
2 1 1

4 2
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1

1
sin cos

cos sin
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x x

x g x x x
l

x x

u m lx g x x
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M m x

y x





  






 



 



 





(36)

where    1 2 3 4

TT
x x x x x y y     The relative

degree of the system is equal to 2r  which is strictly lower

than the system dimension 4n  .

Applying the procedure of input output linearization to the
system (36) of the inverted cart-pendulum, the Boundary
Layer system is given by:

1 1

2 2

x

x









(37)

its control is given by:
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with      2 2
1ref refref

k
v y y y k y y


     

and the internal dynamics is given by
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(38)

Under the QSS assumption that 0v     and

0ref   , sin  and cos 1  .

Using the equation (26), the reduced subsystem can be written

as:
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(39)

with  2

3 4, andref ref QSS refy y u y   

Thus, the integrated backstepping approach is used to
compute the stabilizing input QSSu and the reference trajectory

refy .

By referring to the equations (29) and (30), we obtain:
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(40)

and the stabilizing input QSSu is given by
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e

   

          

      

   

      

        

       

    

(42)

The controller (38) based on the integrator backstepping
approach is now implemented to the inverted cart-pendulum
model described by equation (36).
As a result, in fig. 2, we show the evolution of the tracking
trajectory compared to the desired one  refy t . In this figure,

indeed, there is a perfect agreement between the two
trajectories. The internal dynamics is stable; it can clearly be
seen in fig. 3. Figure 4 represents the evolution of the
stabilizing control law. The dynamics of this control signal is
quite satisfactory.
In fact, there is no unacceptable physical overshoot. One can
also see the reduced response time in which the control law
stabilizes the controlled variable. The tracking error between
the reference and the trajectory is reduced. This shows the
very interesting results given by the developed approach.

PC
Typewriter
87



Fig. 2. Inverted pendulum system

Fig. 3. Evolution of the internal dynamics states

Fig. 4. Evolution of the nonlinear controller

V. CONCLUSIONS

In this paper, we propose a new nonlinear tacking control
approach for non minimum phase systems which is based on
the approximation of the non minimum system by another
singular perturbed system

The method uses the input output linearization technique
to cancel the nonlinearities of the external dynamics and to
stabilize the internal dynamics by the integrator backstepping
approach. A stability analysis of the proposed approach has
been provided based on the singular perturbation theory.

The proposed approach has been used to design a globally
exponential stabilizing controller for the inverted cart-
pendulum system where the rotation angle has a low dynamics
around zero.

The future research will also address the issue of
estimating the internal dynamics for each sampling period and
will develop the appropriate techniques to stabilize it.
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